
Attentional Convolutional Occupancy Networks
xxxxx ∗, Lucas Brunner†, xxxxx ‡ and xxxxx§

∗†§Department of Computer Science, ‡Department of Mathematics
ETH Zurich, Switzerland

Email: ∗xxxxx@ethz.ch, †brunnelu@ethz.ch, ‡xxxxx@ethz.ch, §xxxxx@ethz.ch

Abstract—We present a new state of the art model for learning-
based 3D reconstruction. Our model builds on convolutional
occupancy networks, an architecture for the implicit repre-
sentation of 3D objects, and extends it with various attention
mechanisms at different locations in the network. Results showed
that our method can capture complex and detailed structures and
outperforms the current state of the art models on single object
benchmark datasets.

Index Terms—3D, Attention, ML, Occupancy, Convolution,
Graph, Meshes, ShapeNet,

I. INTRODUCTION

The field of 3D reconstruction has recently achieved incredible
progress. While the community has agreed on a representation in
the 2D images, there is no representation of 3D objects yet that
is memory efficient and can be efficiently inferred by data. On the
one hand, voxels, which are a generalization of pixels, have a major
drawback in terms of memory requirements for high resolutions. On
the other hand, point clouds discard topological relations. Hence,
to extract 3D geometry from the model, one needs to perform
extra post-processing steps. Furthermore, mesh-based representations
are hard to be predicted reliably using feed-forward networks. In
2019, Mescheder et al. [1] have introduced one of the first implicit
representations where 3D structures are described by the decision
boundary of an occupancy network, i.e. the model predicts the
occupancy probability for every 3D point. As this decision boundary
is continuous, the 3D space is not discretized and thus, there are
no topology restrictions on the generated 3D shapes. As the initial
occupancy network architecture was limited by its simple fully-
connectedness, the integration of local information in the observa-
tions, and the incorporation of inductive biases was not possible.
Hence, the initial approaches using occupancy networks mainly fo-
cused on single objects and did not scale to larger scenes. As a result,
Peng et al. [2] introduced convolution occupancy networks, in which
they combine the complementary strengths of convolutional neural
networks of integrating inductive biases and encoding information
in a hierarchical way and the strengths of occupancy networks of
implicitly representing 3D structures.
The rising popularity of attention mechanisms gave rise to the pro-
posal of the following improvements of the convolutional occupancy
networks. First, due to the hard attentive nature of basic pooling oper-
ations (sum, max, average), we replace them with robust attentional
aggregation mechanisms [3]. Second, we replace the feature plane
decoding U-Net, which improved the occupancy networks in the first
place, with an attentional U-Net. Third, we replace the positional
encoding network with a graph neural network yielding an embedding
based on nearest neighbors. The illustration of our ideas is shown in
Fig. 1.

II. MODELS AND METHODS

In the following sections, we first present the baseline model
as well as the different attention mechanisms and optimization
procedures, explaining the rationale behind them.

A. Baseline
To evaluate our models performing object-level 3D reconstruction

from point clouds, we use as a baseline Peng et al.’s [2] best convolu-
tional occupancy network based on their paper. Their model produces
a feature encoding for all the input points using a shallow PointNet [4]
with local pooling for 3D points. Then, they orthographically project
the encoded points onto three canonical planes discretized by a grid
of a resolution of H×W pixels. Pixels being projected into the same
grid cell are aggregated using average pooling. The resulting planar
features are then independently processed by a 2D convolutional
hourglass (U-Net) network [5]. The processed feature planes are then
aggregated using sum pooling. For the actual occupancy prediction,
the project every point p in 3D space onto the three canonical
planes and compute the corresponding feature vector using bilinear
interpolation. Given the point p and its feature vector, they predict the
point’s occupancy using the similar small fully-connected occupancy
network consisting of multiple ResNet blocks to the one Mescheder
et al. [1] used in the initial occupancy network paper.

B. Self Attention
As self attention layers have improved many machine-learning

models [6]–[10], we experimented with self attention layers at
different locations in the encoder network. Integrating it after the first
ResNet block of the initial PointNet encoder architecture produced
the best results.
Due to explicit input shape requirements of Pytorch and the subse-
quent axes permutations of the tensors, we had to drastically reduce
the batch size and the number of points per point cloud in order
to stay in the memory bounds given by the Leonhard GPUs. This
experiment was not mentioned in the project proposal.

C. Robust Attentional Aggregation
A recurrent problem in the convolutional occupancy network

paper is the aggregation of a set of deep features. There are two
ways how one can aggregate a set of features: by treating the set as
a sequence and processing the sequence with a recurrent network, or
by performing pooling operations. However, recurrent networks have
major drawbacks for this task. They are permutation variant, long
term dependencies in the sequence might be hard to capture due
to the vanishing and exploding gradient problem and the sequential
processing of the inputs is inefficient. Pooling operations, on the
other side, tend to be ’hard-attentive’, i.e. they do not learn to
attentively preserve useful information [3].

The two main occurrences of pooling operations are the following:
First, after processing the 3D input points with a shallow PointNet [4]
with local pooling, Peng et al. [2] perform an orthographic projection
of every embedded point onto a canonical plane of discrete resolution.
All the feature points which are projected onto the same grid cell
are aggregated using average pooling. Second, after the projections,
the three generated feature planes are all separately processed
by a multi-plane decoder using 2D U-Nets. The three resulting
feature maps are aggregated using sum-pooling. As opposed to our
initial proposal of aggregating the three feature planes before being

Fig. 1: Our added attention mechanism on the original network structure

processed by the U-Net, we decided to aggregate them after the
U-Net. The main reason for this was the assumption that the model
should be capable of extracting more information when applying the
convolutional 2D U-Net to all three feature planes independently
and thus extracting local and global information contrary to applying
it only once to an aggregated feature plane.

1) Attention Sets: As a first approach, we used AttSets as
introduced by Yang et al. [3]. Given a feature set of N elements
{x1, . . . , xN}, where xi ∈ RD , the goal is to find a permutation
invariant function with learnable weights that aggregates all the
elements of the set into one single element xagg ∈ RD . AttSets
learns an attention score for every latent feature, i.e. for every
dimension of every element of the set. It is important to distinguish
between the features xi representing the elements of the feature
set, and the latent features corresponding to the D entries of every
feature vector xi.

First, every element xi is processed by a linear layer with no
activation function, yielding a set of learned attention activations
C = {c1, . . . , cN}, where ci ∈ RD

ci = g(xn,W) = W · xn (1)

Next, in order to compute the attention scores, the learned attention
activations are being normalized by a softmax layer across the N ele-
ments of the set, yielding a set of attention scores S = {s1, . . . , sN},
where si ∈ RD and

sdn =
ec

d
n∑N

j=1 e
cdj

(2)

The superscript d indicates the entry of the vector. In the next step, the
elements of the feature set are reweighted by the computed attention
scores, yielding a set of reweighted features O = {o1, . . . , oN},
where

on = xn ∗comp sn (3)

The component-wise multiplication operation is represented by
∗comp. Finally, the N reweighted features are summed up yielding
the aggregated element xagg ∈ RD .

xd
agg =

N∑
n=1

odn (4)

Note that the softmax function is applied for one latent feature
across all the elements of the set, i.e. the latent feature xd

agg for d ∈
{1, . . . , D} is a convex combination of xd

1, . . . , x
d
n. An illustration

of the explained procedure can be seen in Fig. 2.

2) Multi-Headed Set Attention: Inspired by Vaswani et al.’s [6]
Multi-Head Attention, we extended the simpler AttSets module for
the feature plane generation with a similar approach in order to
combine the best of both worlds. We want to incorporate the idea
of the model having multiple attention heads as opposed to only one.
Therefore, we collect the points being projected onto the same grid
cell and apply the AttSets module h-times producing h independent
aggregated features, similar to the multi-head attention idea. The
results are then concatenated and transformed into a single aggregated
feature using a linear layer. The rationale behind this was that having
multiple AttSet-heads would increase the power of our model. We
found h=8 to be a good number of heads. A visualization of this
approach is shown in Fig. 3. The colors of the different components
are matching in Fig. 2 and 3.

D. Attention U-Net

In the original Convolutional Occupancy Networks, 2D convolu-
tional hourglass networks (U-Net) were used to process the feature
planes from the encoder. 2D U-Net composed of a contracting path
(4 down-conv layers) and an expansive path (4 up-conv layers)
with skip connections to integrate both local and global information
(Ronneberger et al. [5]). Inspired by Oktay et al. [11], we add
an attention block to the original U-Net structure, where attention
gates (AGs) are incorporated into the standard U-Net architecture to
highlight prominent features from irrelevant responses that are passed
through the skip connections. We use additive attention [12] to get the
attention coefficients αi ∈ [0, 1], which identifies whether features are
salient or not. Additive attention is more computationally expensive,
but is experimentally proved to work well in this case, as from Oktay
et al. [11]. In layer l, AGs output element-wise multiplication of the
input feature-maps and attention coefficients. The calculation path in
attention gates works as follows:

qlatt = ϕT
(
σ1(W

T
x xl

i +WT
g gi + bg)

)
+ bϕ (5)

αl
i = σ2(q

l
att(x

l
i, gi; Θatt)) (6)

x̂l
i,c = xl

i,c · αl
i (7)

where gating vector gi ∈ RFg is taken from the next lowest
layer in the expansive path. The vector has smaller dimensions and
better feature representation, given that it comes from deeper into
the network. Feature vector xl

i ∈ RFl is from skip connection at
layer l. The set of parameters Θatt contains: linear transformations
Wx ∈ RFl×Fint , Wg ∈ RFg×Fint , ϕ ∈ RFint×1 and bias term
bϕ ∈ R, bg ∈ RFint , where RFint denotes an intermediate space. The
i and c in xl

i,c denote spatial and channel dimensions respectively.
The linear transformations are computed by adding channel-wise
1× 1× 1 convolution layers on the input tensors.

Fig. 2: Attention Set

Fig. 3: Multi-Head Attention Set

E. Graph Neural Network

Graph neural networks (GNNs) have made it possible to train
better models on point cloud data [13]–[15]. The main motivation
behind using a GNN is that it enables the computation of a point
embedding based on the relations of the nodes in the graph. In order
to make use of the graph structure, one first needs to decide, how the
points of a point cloud should be connected and what kind of GNN
model one wants to use. Due to the good results in the SuperGlue
paper [15] using fully-connected graphs combined with attention, we
base our implementation on the implementation in the SuperGlue
paper, where the attentional graph neural network consists of multiple
layers of self and cross attention is applied to a pair of key-point
sets from two images. However, in our base graph model we only
consider one point cloud (not a pair of point clouds) and only use self
attention. Besides choosing the structure of the graph, one also has to
decide how to actually model the nodes of the graph, i.e. choosing the
location of the graph layer within the initial convolutional occupancy
network architecture. We experimented with two different models. On
the one hand, we added a graph layer at the very beginning of the
encoder pipeline, treating every 3D point as a node of the complete
graph. This graph layer can be seen as an extension of the linear
layer being responsible for the positional encoding in the baseline
model architecture. On the other hand, we built a graph treating the
embedded points as nodes. Both graph layers did not replace any
layers but can be seen as an enrichment of the model. Because of
GPU memory limitations, we only experimented with 1(-4) graph

attention layer in both models, no edge features were used and the
number of points per point cloud as well as the batch size had to be
reduced drastically.

For future work, one could try to follow the alternating scheme
of self and cross attention of the SuperGlue [15] more closely, by
using the 3D input points as the first set of nodes and the grid points
as a second set of points. The goal of this approach would again
be the computation of a point embedding based on information of
neighboring nodes, but this time sharing information between two
layers.

Besides using a fully-connected graph, we also experimented with
a k-nearest-neighbor graph, based on Euclidean distance, i.e. as
opposed to the complete graph, nodes are only connected to their
k nearest neighbors. The intuition behind this approach is that this
should lead to better local features and therefore better models.
Building the knn-graph during runtime is more costly but seemed
more promising as one can keep the rest of the input pipeline as
is. Opposing dependency requirements made this approach infeasible
and replacing the input pipeline would have led to models deviating
too strongly from the baseline, making a direct model comparison
harder. Hence, we omit this approach in the rest of this report.

III. RESULTS

In the following section, we first give a brief overview over the
used datasets and the metrics used for the evaluation of the different
approaches. We then present the results of the different experiments
that we conducted in comparison to the given baseline.

A. Dataset
As a dataset, we use the ShapeNet [16] subset of Choy et

al. [17] which contains 13 classes of subjects and contains a training,
validation and testing split. As every model had to be trained for ∼48
hours and due to long waiting periods on the cluster, we were not
able to test our model on other datasets of larger scenes.

B. Metrics
We use Volumetric Intersection over Union (IoU), Chamfer L1

Distance, Normal Consistency and the F score as metrics for evalu-
ation.
IoU: Let Mpred and MGT be the set of all points that are inside or
on the surface of the predicted and ground truth meshes. The IoU is
the volume of the two meshes’ intersection divided by the volume of
their union. The IoU ranges from 0, where there is no intersection
with the ground truth, to 1, where we have a perfect match.

IoU(Mpred,MGT) ≡
|Mpred ∩MGT|
|Mpred ∪MGT|

(8)

Chamfer-L1: Measures the distance of points from two point clouds.
This measurement approaches 0 if there are perfect matches for all

category IoU Chamfer-L1 · 10−2

Baseline SelfAtt AttSet AttUNet UNetAgg GraphAtt AttUAgg Baseline SelfAtt AttSet AttUNet UNetAgg GraphAtt AttUAgg
airplane 0.840 0.837 0.850 0.845 0.848 0.839 0.863 0.353 0.360 0.335 0.344 0.336 0.351 0.309
bench 0.821 0.826 0.831 0.827 0.829 0.825 0.841 0.366 0.357 0.349 0.355 0.351 0.357 0.332

cabinet 0.936 0.936 0.940 0.935 0.938 0.940 0.943 0.492 0.496 0.467 0.492 0.475 0.464 0.451
car 0.882 0.881 0.886 0.883 0.885 0.884 0.889 0.773 0.785 0.744 0.765 0.757 0.745 0.731

chair 0.865 0.869 0.872 0.868 0.872 0.867 0.880 0.474 0.466 0.458 0.469 0.454 0.466 0.437
display 0.924 0.930 0.927 0.926 0.926 0.927 0.934 0.372 0.360 0.366 0.369 0.368 0.363 0.348
lamp 0.776 0.773 0.786 0.738 0.780 0.776 0.798 0.604 0.626 0.580 0.721 0.582 0.573 0.549

speaker 0.914 0.917 0.920 0.914 0.914 0.919 0.922 0.663 0.667 0.632 0.670 0.661 0.623 0.613
rifle 0.840 0.834 0.844 0.841 0.831 0.833 0.858 0.290 0.298 0.285 0.285 0.301 0.300 0.257
sofa 0.932 0.934 0.938 0.934 0.935 0.938 0.941 0.436 0.427 0.409 0.426 0.422 0.407 0.397
table 0.882 0.883 0.889 0.885 0.885 0.887 0.900 0.399 0.397 0.380 0.395 0.386 0.382 0.362

telephone 0.949 0.956 0.951 0.954 0.953 0.952 0.955 0.283 0.263 0.273 0.271 0.271 0.272 0.265
vessel 0.863 0.860 0.870 0.863 0.862 0.863 0.878 0.437 0.446 0.419 0.441 0.443 0.436 0.397
mean 0.879 0.880 0.885 0.878 0.881 0.881 0.893 0.457 0.458 0.438 0.462 0.447 0.442 0.419

category Normal Consistency F-score
Baseline SelfAtt AttSet AttUNet UNetAgg GraphAtt AttUAgg Baseline SelfAtt AttSet AttUNet UNetAgg GraphAtt AttUAgg

airplane 0.928 0.926 0.931 0.929 0.932 0.929 0.934 0.961 0.960 0.968 0.962 0.966 0.963 0.973
bench 0.918 0.919 0.921 0.919 0.921 0.920 0.923 0.960 0.963 0.965 0.963 0.965 0.963 0.970

cabinet 0.955 0.954 0.957 0.954 0.956 0.955 0.958 0.951 0.948 0.956 0.950 0.954 0.957 0.959
car 0.891 0.890 0.892 0.891 0.893 0.890 0.894 0.842 0.840 0.852 0.845 0.849 0.849 0.856

chair 0.941 0.941 0.943 0.941 0.944 0.941 0.946 0.934 0.937 0.942 0.935 0.944 0.936 0.947
display 0.968 0.968 0.969 0.967 0.969 0.968 0.970 0.971 0.972 0.973 0.970 0.972 0.973 0.976
lamp 0.898 0.898 0.902 0.888 0.903 0.900 0.905 0.884 0.881 0.895 0.855 0.893 0.888 0.905

speaker 0.937 0.937 0.940 0.937 0.937 0.939 0.940 0.887 0.888 0.897 0.885 0.888 0.895 0.898
rifle 0.924 0.930 0.928 0.930 0.931 0.924 0.932 0.976 0.979 0.979 0.979 0.977 0.975 0.983
sofa 0.957 0.956 0.959 0.957 0.958 0.958 0.960 0.948 0.949 0.955 0.950 0.952 0.955 0.958
table 0.958 0.957 0.960 0.958 0.959 0.959 0.961 0.964 0.964 0.970 0.965 0.967 0.970 0.974

telephone 0.982 0.982 0.983 0.982 0.983 0.982 0.983 0.987 0.989 0.989 0.987 0.989 0.989 0.990
vessel 0.917 0.917 0.919 0.918 0.921 0.917 0.923 0.928 0.929 0.936 0.928 0.930 0.930 0.941
mean 0.936 0.937 0.939 0.936 0.939 0.937 0.941 0.938 0.938 0.944 0.937 0.942 0.942 0.949

Table I: 3D Reconstruction performance metrics of all our models vs. baseline model. AttSet and UNetAgg refer to Section II
C, AttUNet refers to Section II D, GraphAtt refers to Section II E, AttUAgg refers to a combination of AttSet and UNetAgg.
Note for some methods, we trained different variants and only put the best score here.

points in the two point clouds. Let ∂Mpred and ∂MGT be the surfaces
of the meshes.

Chamfer-L1(Mpred,MGT) ≡
1

2∂Mpred

∫
∂Mpred

min
q∈∂MGT

∥p− q∥dp+

1

2∂MGT

∫
∂MGT

min
p∈∂Mpred

∥p− q∥dq

(9)

Normal Consistency: Measures the consistency of normal vectors.
Let n(p) and n(q) be the unit normal vectors on the mesh surface
∂Mpred and ∂MGT respectively, and proj2(p)and proj1(q) denote the
projections of p and q onto ∂MGT and ∂Mpred respectively .

Norm-Con(Mpred,MGT) ≡
1

2∂Mpred

∫
∂Mpred

|⟨n(p), n(proj2(p))⟩|dp+

1

2∂MGT

∫
∂MGT

|⟨n(proj1(q)), n(q)⟩|dq

(10)

F-Score: As Tatarchenko et al. [18], define recall as the percentage of
points on GT mesh lying within a certain distance to the reconstructed
mesh, and precision as the percentage of points on the reconstructed
mesh that lies within a certain distance to the GT. F-score is defined
as the harmonic mean of the two.

F-score = 2 · Precision · Recall
Precision + Recall

(11)

The results of the different experiments can be seen in Table I.
All the models were trained for 500k iterations. The AttSet model,
corresponding to the base architecture enriched with a multi-headed
(8 heads) AttSets module for the orthographic projections of the
embedded points and the UNetAgg model, corresponding to the base
model enriched with an AttSets module for the aggregation of the
processed feature planes after the U-Net, both outperform the baseline

Fig. 4: Validation IoU Graph

model. One can see that the model AttUAgg, a combination of the
AttSet and the UNetAgg model, clearly outperforms all the other
models on all the metrics.

A plot of the validation IoU metrics of our best approach and
the baseline can be seen in Fig. 4. Fig. 7 - 9 in the appendix show
a comparison of the meshes generated by our different models, the
ones generated by the baseline model and the ground truth meshes.

IV. DISCUSSION

In the following section, we discuss the results and implications
of our models.

In table I, one can see that three of our models outperform the
baseline model. AttUAgg, the combination of the models AttSet
and UnetAgg even outperforms the baseline as well as the other
approaches on all categories and metrics by a significant margin.

GT SelfAtt AttSet AttUNet UNetAgg GraphAtt AttUAgg Baseline

Fig. 5: A comparison of generated meshes vs. ground truth mesh on ShapeNet

During training, our models did not only reach a higher validation
IoU, but they also reached higher values than the baseline much
faster i.e. after only one third of the total iterations, this can be seen
in Fig. 4.

The models SelfAtt, AttUNet and GraphAtt did not manage
to exceed the performance of the baseline but performed equally well.
However, SelfAtt and GraphAtt reached their peak validation
IoU in about half of the time, compared to the baseline. AttUNet
uses additive attention instead of multiplicative attention, which is
computationally more expensive. The validation IoU was still going
up at around 500k iterations. One could argue that with more
training time the result would have gotten even better. This leaves
us with the following insight: Using graph layers and self attention
layers in the encoder network and using an attention U-Net for the
processing of the generated feature planes does not benefit the final
results evidently, but they have some positive impacts as mentioned
above. Replacing the hard-attentive pooling operations with robust
attentional aggregation mechanisms, however, significantly improved
the performance of convolutional occupancy networks, which is also
the reason why we did a new experiment with the combination of
the two.

Besides the numerical results, a clear improvement can also be
perceived visually (see Fig. 5, a large comparison can be found in
the appendix in Fig. 7-9). As the baseline IoU is already at a very
high value, the improvements are especially visible in complex and
detailed structures. We particularly noted a large impact on fragile
structures which speaks for the attention mechanism. Such detailed
structures get easily lost through pooling operations like a max
pooling or average pooling. The attention mechanism learns to treat
such structures with more care and gives better aggregation results.

Note that during training, we were not able to reach the same
performance with the baseline model as reported in the original
Convolutional Occupancy paper (see Peng et al. [2] supplementary
material). This may have different reasons, one of which being the
imprecise information about training time: ”at least 300k iterations”.
Therefore, we trained each model for 500k iterations, leading our
model to even exceed the reported performance presented in the
original paper.

For the approaches GraphAtt and SelfAtt, one has to note the
following: As we used a different number of points per pointcloud
than the baseline model that we are comparing our model against,
it is hard to directly argue about the performance differences of the
two models. However, our model achieved comparable results even
though it was trained on 17%− 30% fewer points.

We hypothesize that the added attention mechanisms would also

benefit the other versions of Peng et al.’s convolutional occupancy
networks that use local patch encoder and decoder models. The
verification of this claim and the application of our model to datasets
of larger scenes, such as MatterPort3D [19] or ScanNet v2 [20], are
left for future work.

V. SUMMARY

Attention mechanisms have shown promising results in many
different areas. We managed to successfully apply different attention
modules to the task of learning-based 3D reconstruction resulting in
a new architecture that we call attentional convolutional occupancy
networks. Our model builds on the implicit representation of 3D
objects as introduced in [2]. Due to the attentive extensions of
the base model, our methods outperform the state of art in terms
of quality and computation time. Our best model shows a large
improvement in connecting fragile structures and preserving details
more precisely.

REFERENCES

[1] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian
Nowozin, and Andreas Geiger, “Occupancy networks: Learning 3d re-
construction in function space,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4460–4470.

[2] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and
Andreas Geiger, “Convolutional occupancy networks,” arXiv preprint
arXiv:2003.04618, 2020.

[3] Bo Yang, Sen Wang, Andrew Markham, and Niki Trigoni, “Attentional
aggregation of deep feature sets for multi-view 3d reconstruction,” arXiv
preprint arXiv:1808.00758, 2018.

[4] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas, “Pointnet:
Deep learning on point sets for 3d classification and segmentation,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 652–660.

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,” 2015.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, “Attention
is all you need,” in Advances in neural information processing systems,
2017, pp. 5998–6008.

[7] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio, “Show, attend
and tell: Neural image caption generation with visual attention,” in
International conference on machine learning, 2015, pp. 2048–2057.

[8] Minh-Thang Luong, Hieu Pham, and Christopher D Manning, “Effec-
tive approaches to attention-based neural machine translation,” arXiv
preprint arXiv:1508.04025, 2015.

[9] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le, “Massive
exploration of neural machine translation architectures,” arXiv preprint
arXiv:1703.03906, 2017.

[10] Jianpeng Cheng, Li Dong, and Mirella Lapata, “Long short-
term memory-networks for machine reading,” arXiv preprint
arXiv:1601.06733, 2016.

[11] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias
Heinrich, Kazunari Misawa, Kensaku Mori, Steven McDonagh, Nils Y
Hammerla, Bernhard Kainz, Ben Glocker, and Daniel Rueckert, “Atten-
tion u-net: Learning where to look for the pancreas,” 2018.

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural
machine translation by jointly learning to align and translate,” 2016.

[13] Weijing Shi and Raj Rajkumar, “Point-gnn: Graph neural network for
3d object detection in a point cloud,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
1711–1719.

[14] Loic Landrieu and Martin Simonovsky, “Large-scale point cloud
semantic segmentation with superpoint graphs,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 4558–4567.

[15] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich, “Superglue: Learning feature matching with graph neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 4938–4947.

[16] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan,
Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song,
Hao Su, et al., “Shapenet: An information-rich 3d model repository,”
arXiv preprint arXiv:1512.03012, 2015.

[17] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and
Silvio Savarese, “3d-r2n2: A unified approach for single and multi-
view 3d object reconstruction,” in European conference on computer
vision. Springer, 2016, pp. 628–644.

[18] Maxim Tatarchenko, Stephan R. Richter, René Ranftl, Zhuwen Li,
Vladlen Koltun, and Thomas Brox, “What do single-view 3d recon-
struction networks learn?,” 2019.

[19] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang,
“Matterport3d: Learning from rgb-d data in indoor environments,” arXiv
preprint arXiv:1709.06158, 2017.

[20] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Nießner, “Scannet: Richly-annotated 3d re-
constructions of indoor scenes,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 5828–5839.

APPENDIX

A. Network Architecture
We present a complete overview of the model architecture of

our best attentional convolutional occupancy network containing two
robust attentional aggregation blocks (see Fig 6).

Fig. 6: Model Architecture of the Attentional Convolutional
Occupancy Network.

B. Hardware and Training Time
We train our models on the Leonhard Cluster (ETHZ GPU

Cluster). The GPUs used for training are GTX 1080Ti and RTX
2080Ti, one at a time, both with 11Gigabyte Memory which we
used to the full extent. For the base model, this allows a batch size
of 32 for the biggest model the batchsize has to be smaller than
16. Training time was around 48h for each model. We used Adam
optimizer with a learning rate of 1e − 4. All our models lay within
2′000′000± 10% parameters.

C. Object-level 3D reconstruction comparison
In this section, we give examples of our best generated meshes

versus ground truth meshes and baseline meshes to show our best
model can reconstruct details better than the baseline method.

airplane

bench

cabinet

car

chair

GT Our Best Baseline
Fig. 7: A comparison of generated meshes of all the 13 classes

display

lamp

speaker

rifle

sofa

GT Our Best Baseline
Fig. 8: A comparison of generated meshes of all the 13 classes

table

telephone

vessel

GT Our Best Baseline
Fig. 9: A comparison of generated meshes of all the 13 classes

	Introduction
	Models and Methods
	Baseline
	Self Attention
	Robust Attentional Aggregation
	Attention Sets
	Multi-Headed Set Attention

	Attention U-Net
	Graph Neural Network

	Results
	Dataset
	Metrics

	Discussion
	Summary
	References
	Network Architecture
	Hardware and Training Time
	Object-level 3D reconstruction comparison

