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Abstract—In this work we use the given galaxy image dataset
and train a Wasserstein GAN (WGAN) to generate images
of galaxies which are indistinguishable for the human eye
from the original image samples. Furthermore, we compare the
performance of the trained WGAN model against the state-of-
the-art StyleGAN2 pretrained with additional Google Sky data.
Finally, we demonstrate how to finetune the WGAN critic in
order to predict galaxyness scores. We achieve 0.10394 mean
absolute error on the public Kaggle test dataset.

Index Terms—Generative Adversarial Network, Galaxy Image
Generation, Similarity Score Prediction

I. INTRODUCTION

Training deep neural networks requires huge amounts of
data, thus the demand for extensive datasets has recently
surged. Due to the lack of adequate resources, generative
models have experienced a considerable increase in relevance
as the generation of realistic data enables the training of
state-of-the-art deep neural networks in fields that suffer from
data shortage. One type of generative models are Generative
Adversarial Networks (GANs [1]), which are commonly used
for synthesis of natural images [2], images of human faces [3]
and various other types of image data. GANs have also been
successfully used on astronomical data to advance research in
astrophysics dark energy science [4] and to recover features
in astrophysical images [5].

In our work, we train GANs to capture the concept of
galaxyness. We use the given dataset consisting of reference
cosmology images and their galaxyness scores, representing
how similar an image is to a prototypical cosmology image.
We demonstrate how to generate high-quality cosmology im-
ages based on the given dataset of cosmological reference
images. Furthermore, we show how to use the discriminatory
network in order to learn the similarity function (galaxyness
scores), which can then be applied in a score prediction task
to a set of unseen query images.

All of our code is available at: https://gitlab.ethz.ch/sheinke/
cil astroneers/.

II. MODELS AND METHODS

In the sections A, B and C we provide an analysis of
the given dataset and describe the methods that were applied
for preprocessing. Moreover, in the sections D-G we give an
overview of the used models and optimization procedures,
explaining the rationale behind them.

A. Data analysis

In our work we use a grayscale 1000x1000 pixels image
dataset consisting of:

1) 1200 labeled images: Real cosmology images are la-
beled as class 1, whereas non-cosmology or corrupted images
are labeled as class 0. The label distribution is imbalanced,
with 200 0-labeled images and 1000 real cosmology images.

A representative example of a cosmology image can be
seen in figure 1. Images are predominantly black and depict
distant astrophysical objects. They have a complex underlying
structure that is invisible to the human eye.

Galaxy Image Black and White Galaxy Image

Fig. 1: A representative example of a cosmology image (left). Setting
all pixels with higher-than-average brightness to white reveals a
complex structure that is undetectable by means of visual inspection
(right).

2) 9600 scored images: The scored images are drawn from
the same distribution as the labeled images, but instead of
labels they have real-valued scores in the range [0.0, 8.0].
Higher scores mean greater similarity to a “prototypically
ideal” galaxy image. There is no overlap between labeled and
scored images but a visual analysis of the dataset revealed
that all images with scores above 0.01 are cosmology images
(real or corrupted). Based on some basic assumptions on the
process of image sampling for the scored and labeled images,
we are confident with over 99% probability that the number
of scored non-real images is lower than 2100. This implies
that with high confidence we can expect that non-real images
have scores of 0.86 at most. Please see details of this analysis
in appendix B.

The score distribution is highly imbalanced, with peaks
around the scores 0.0 and 1.5, as shown in figure 2. It is
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Fig. 2: Highly imbalanced distribution of scores with major peaks
around 0.0 and 1.5.

impossible for a layperson to accurately score the cosmologi-
cal images by means of visual analysis. Therefore, we assume
the similarity scores to be the output of an unknown function,
that we will treat as a blackbox.

B. Data augmentation and Preprocessing

1) Data selection: In the training process of the generative
model we make use of both the labeled and the scored images.
We filter out all images from the scored set with scores lower
than 1.0 so that our model learns to generate higher quality
samples. Moreover, this threshold ensures filtering of all non-
cosmology and corrupted images (see II-A2). From the labeled
dataset we include all images labeled as real cosmology data.

For the task of scoring query images, we only use the scored
images with their corresponding scores, which we normalize
using the mean and the standard deviation of the training set.
A training and a validation set is generated by a random split
of data with 90% and 10% of samples respectively.

2) Image resolution: The given images have a very high
resolution of 1000x1000. Working with such large images is
computationally demanding and more training data is needed
to accurately learn full scale data characteristics. One might
consider cropping the training data into smaller images to
simplify the training and to obtain more data samples. The
astrophysical objects in the images are small compared to
the image size, so the cropping should preserve their local
structure. However, such an approach ignores global image
geometry and might introduce artifacts if small images were to
be combined to form a full-sized cosmology image. Therefore,
we operate on full-size images exclusively, and perform data
augmentation in order to increase the number of training
samples.

3) Data augmentation: We assume that the galaxyness
score of a galaxy is invariant to 90-degree rotations of the
depicting image. Therefore we use all original images together
with their 90-, 180- and 270-degrees rotations. Due to the
discrete nature of image data, rotations by other angles intro-
duce interpolation artifacts and our assumption of rotation-
invariance no longer holds. To further augment the data,

we additionally shift and randomly crop the images, adding
black pixel padding where needed to ensure 1000x1000 size.
The galaxy images have mostly low intensity pixels (see
appendix A) so we consider padding to cause low alteration
to galaxy image characteristics. Finally, we double the size
of the augmented dataset by flipping the previously obtained
images.

C. Additional Data Source

Despite the augmentation procedure the variability of the
obtained training dataset samples is limited. In order to mit-
igate the effects of the limited dataset size on the generative
model training, we perform transfer learning experiments us-
ing Google Sky [6] images of the night sky. Those images are
different to the galaxy images in our goal dataset, nevertheless
we expect pretraining on this additional data to help to gather
statistics about distribution of star sizes, structure types of stars
and their relative positions.

We use 10% of all the Google Sky pictures available with
the highest zoom factor (highest zoom-factor is not available
everywhere because of the telescope positions on Earth).
Concatenating the collected images and using crops of this
larger picture results in a theoretically unlimited number of
pretraining data samples. For every epoch, we use a different
set of 80.000 images. We further refer to this newly created
pretraining dataset as the Google Sky dataset (example in
appendix H).

D. Galaxy Generation Task: Baseline Models

For the galaxy image generation task we experiment with
two basic generative models.

1) Convolutional Variational Autoencoder: A variational
autoencoder (VAE) [7] consists of an encoder network that
maps high-dimensional inputs into a latent space, and a
decoder network that reconstructs the original input from
this latent representation. By introducing a density model
over the latent space the decoder network can be used to
generate new data. VAEs are known to be easier to train than
adversarial architectures, thus in our experiments we first con-
sidered a convolutional VAE model (CVAE). We tested various
combinations of hyperparameters for the dimensionality of
the latent space and the depth and size of the encoder and
decoder networks. Irrespective of any particular experimental
setting, the CVAE training never produced anything else than
completely black images.

In the full-size 1000x1000 pixel images individual stars and
galaxies each only consist of a dozen pixels at most. Vanilla
CVAEs have a tendency to produce blurry images [8], thus
we conclude that our basic CVAE implementation may be
incapable of learning such finegrained features.

2) Deep Convolutional Generative Adversarial Network:
Deep convolutional generative adversarial networks (DC-
GANs) are based on regular GANs [1], but use deep con-
volutional networks for the generator and the discriminator,
leading to an increased training stability [9].



In spite of the architectural improvements of the normal
GAN, the training of the DCGAN model on the galaxy dataset
yielded poor results as the generated images turned out to
be predominantly black. One possible explanation for the bad
training performance of the DCGANs is the vanishing gradient
problem. If the discriminator is able to correctly distinguish
between generated and real images, the gradient used in the
update step of the generator vanishes.

We found the performance of the analysed basic models un-
satisfactory, hence they are excluded from further analysis. We
achieve good results by using models that do not suffer from
the previously mentioned limitations of CVAEs or DCGANs.

E. Galaxy Generation Task: Wasserstein GAN

One of the main weaknesses of regular GANs is their insta-
bility during training. They can either suffer from vanishing
gradients or mode collapse. The authors of the original GAN
paper [1] directly proposed an alternative cost function to
tackle the vanishing gradient problem. Arjovsky et al. [10]
showed that the alternative cost function has a high vari-
ance. The solution proposed by [10] is the Wasserstein GAN
(WGAN), which is optimized by a new cost function using the
Earth-Mover (EM) or Wasserstein-1 distance. The main benefit
is that the Wasserstein distance has a smoother gradient.
Therefore, one can train the WGAN critic (discriminator) until
optimality without the vanishing gradient.

The WGAN successfully learns to generate images that
closely resemble the original samples after 4 epochs of train-
ing, please see the results analysis in the section III-A.

For the WGAN model details, please refer to appendix C.

F. Galaxy Generation Task: StyleGAN2

To ensure high quality of generated images (potentially
higher than the ones generated by the WGAN) we decided
to additionally train some state-of-the-art GAN architecture
using the Google Sky dataset for pretraining. We analyzed the
potential of multiple state-of-the-art GANs. However, many
of them either required a huge amount of training data or an
infeasible training time. StyleGAN [3] performs exceptionally
well with an acceptable training time and relatively few
model parameters. The first version of this model suffers from
artifacts like raindrops on the generated images, therefore we
use the improved version StyleGAN2 [11] that is able to
remove many of those artifacts.

The original version of the StyleGAN2 was trained on RGB-
images, thus we slightly change the model architecture to
handle the given grayscale images. We also reduce the overall
number of parameters by a factor of three by scaling the
number of convolutional filters, such that the ratio of trainable
parameters and input size stays approximately the same.

The number of our training images after data augmentation
1 is comparable to the number of face-images used in the

1For StyleGAN2 data augmentation we pad images to 1024x1024 due
to architectural reasons, instead of 1000x1000. We also increase the score
threshold to 1.25 as after pretraining on Google Sky dataset we prefer less
data but of higher quality.

original StyleGAN2. After about 75 epochs we start to get
images which are hard to distinguish from the real cosmology
images. Pretraining on the GoogleSky dataset helps even
further, as after 3 epochs after pretraining the generated images
look very similar to samples from the provided dataset.

For the result analysis please see the section III-A. For
architectural and optimisation details we refer the reader to
[11].

G. Score Prediction Task

The trained discriminator is able to differentiate between
real and false image samples and thus has learned something
about what constitutes a realistic cosmology image. Therefore,
to predict scores for the given set of query images, we make
use of transfer learning, using the trained WGAN discrimina-
tor. We apply the following training procedure:

1) Load the pretrained discriminator / critic and exclude its
weights from further training (layer freezing).

2) Change the model output by adding new (untrained)
layers to the second-to-last layer of the old model, for
details please see appendix 5.

3) Train only the newly added layers until the validation
error does not improve anymore.

4) Unfreeze the base-layers of the pretrained critic and train
them jointly, saving the model with the best validation
score.

As the base model we use the trained WGAN critic, which
has more parameters than the StyleGAN2 discriminator and
yielded better performance in early stages of the finetuning
experiments.

To further improve the score prediction accuracy, we create
a new model formed by an ensemble of five finetuned WGAN
critics, which were trained with different validation sets.
The similarity score is then computed as the average of all
networks’ outputs.

To judge the performance of our approach, we compare it
against three baselines:

• Average score prediction.
• Standard convolutional neural network (CNN) network

(details in appendix D).
• Feature based approach using gradient boosting regres-

sion trees on Coiflet wavelet coefficients energy propor-
tion features (please see appendix E).

We also examine the impact of pretraining the critic as
part of the GAN, by comparing the finetuned critic against an
identical model with randomly initialized weights (note that in
this experiment we directly train all layers jointly, since early
frozen layers with random weights would only leave noise to
the trainable layers at the end of the model). Please find the
results analysis in the section III-B.



III. RESULTS

A. Galaxy Image Generation

We do not have access to the ground truth similarity
function, therefore we cannot judge the galaxyness of gen-
erated images directly. By means of visual inspection we can
conclude that both the WGAN and the StyleGAN2 models
produce full-size images that to the human eye look very
similar to the original data samples (see appendix 9 and 10
for samples of generated images and appendix H for YouTube
videos of the StyleGAN2 training process). We notice that
the StyleGAN2 stars look more blurry than the ones from the
original dataset or generated by the WGAN model.

To gain some additional insights about the quality of the
images, we also score a large set of generated images using
our WGAN critic score prediction model. We obtain score
distributions for image samples generated by the two models
(see figure 3).

Therefore, based on the assumption that our score prediction
model approximates the unknown similarity function well,
we observe that the WGAN images achieve mean score of
2.07 with 0.91 standard deviation, whereas the StyleGAN2
produces images with mean score of 1.73 and 0.46 standard
deviation. The WGAN samples resemble the original distri-
bution very well, just without the spike around 0, which is
explained by the fact that the samples with low scores were
filtered out before training. The StyleGAN2 generates much
less diverse samples with less quality on average. However, the
worst similarity score for StyleGAN2 images is 0.95, which
is much higher than 0.25 in case of WGAN samples.
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Fig. 3: Original score distribution (transparent grey) and predicted
scores for StyleGAN2 images (green) and WGAN images (blue).

B. Accurate Score Prediction

We evaluate the models for the score prediction task using
mean absolute error on the Kaggle public test set (from now
on abbreviated as MAEKP).

Model MAEKP
Average Score Prediction 0.885

Standard CNN 0.772
Feature-based Approach 0.289
Finetuned WGAN Critic 0.126

Ensemble of 5 WGAN Critics 0.104

Table 1: Mean absolute error on the Kaggle public set.

Constant prediction of the average score results in 0.885
MAEKP. The standard CNN improves the result only by
about 0.1, while the feature based model achieves MAEKP
of 0.289. The finetuned WGAN critic performs significantly
better than all the baseline models with 0.126 MAEKP score.
The ensemble model achieves an improvement over that with
the best 0.104 MAEKP score 2.

We observe that transfer learning with the trained critic
for the score prediction task is beneficial in several ways.
While we keep the base-layers frozen, the correlation between
train error and validation error is remarkably high, whereas
when we use randomly initialized weights and train the model
without any transfer learning, the correlation between train
error and validation error seems almost absent. Moreover, the
randomly initialized model performs much worse on average
3.

IV. DISCUSSION

A. Image Generation

The WGAN models seems to mimic the image distribution
much better than the StyleGAN2 model with the Galaxy Sky
Dataset pretraining. We hypothesize that this might be an
effect of:

• Image characteristics bias (e.g. blurry stars) introduced in
the Galaxy Sky Dataset pretraining phase and not fully
removed during the finetuning.

• Imperfect model evaluation method as the score predic-
tion is based on the finetuned WGAN critic that might
be biased towards WGAN-generated images.

B. Accurate Score Prediction

The final ensemble of 5 WGAN critics results in 0.10394
MAEKP. We observe that for the training set our predictions
have greater variance for high similarity scores, which is
an effect of less data in the higher range of score values.
To minimize the negative impact of this dataset imbalance,
we experimented with rebalancing procedures. Our approach
did not yield satisfactory results, however, we expect that
more sophisticated methods of rebalancing might be beneficial.
Adding to the ensemble a model tailored towards high score
range predictions might also improve the prediction bias in
this highest score range (see appendix F).

V. SUMMARY

We presented an approach to generate full-size realistic
cosmology images. Furthermore, we showed how to finetune
the pretrained discriminator to the galaxyness score prediction
task. Our end-to-end approach is capable of capturing the
concept of galaxyness, both in terms of a generative approach
as well as in a discriminatory sense.

2The experiments were run three times, reported results are averaged.
3In a few experiments the randomly initialized model achieved comparable

validation errors, but it was impossible to systematically reproduce this due
to training instability.
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APPENDIX

A. Data Analysis Pixel Counts

We observe that the vast majority of galaxy image pixels
are black (0-3 intensity in [0,255] range).
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Appendix 1: Distribution of pixel intensities for a representative cos-
mology image. We observed that the distributions of pixel intensities
for cosmological images look like the one depicted above, sometimes
shifted slightly to the left or right, with the average intensity ranging
from 0 to 3.

B. Score Threshold Analysis

We know that the labeled images are drawn from the same
distribution as the scored images. We make an additional
natural assumption that each image from the scored and
labeled set was sampled independently with probability p of
being a non-real image. Based on this assumption, we can
estimate with high confidence the number of non-real images
in the scored dataset and a score threshold that should filter
them out. Please see R code below.
# use package binom
r e q u i r e ( binom )

# load s c o r e d and l a b e l e d d a t a s e t s
s c o r e d <− read . csv ( ” s c o r e d . csv ” )
l a b e l e d <− read . csv ( ” l a b e l e d . csv ” )

# c o u n t images
l a b e l e d . t o t a l <− nrow ( l a b e l e d )
l a b e l e d . n o n r e a l <− nrow ( l a b e l e d [ l a b e l e d $ A c t u a l == 0 , ] )
s c o r e d . t o t a l <− nrow ( s c o r e d )

# compute c o n f i d e n c e i n t e r v a l f o r p − p r o b a b i l i t y o f n o n r e a l image
# f o r b i n o m i a l d i s t r i b u t i o n w i t h l a b e l e d . t o t a l t r i a l s
con f . i n t e r v a l <− binom . c o n f i n t ( l a b e l e d . n o n r e a l , l a b e l e d . t o t a l , con f . l e v e l = 0 . 9 9 9 )

# choose t h e most r e s t r i c t i v e bound ( t h e h i g h e s t upper bound f o r p )
maxi . i n d <− which . max ( con f . i n t e r v a l $upper )
h i g h e s t . p <− con f . i n t e r v a l [ maxi . ind , ” uppe r ” ]

# f i n d 0 .999 q u a n t i l e o f t h e B i n o m i a l d i s t r i b u t i o n
# w i t h p = h i g h e s t . p and number o f t r a i l s = s c o r e d . t o t a l
q u a n t <− qbinom ( 0 . 9 9 9 , s c o r e d . t o t a l , h i g h e s t . p )
p r i n t ( q u a n t )
# o u t p u t 2092

# f i n d c o r r e s p o n d i n g s c o r e t h r e s h o l d
s c o r e s . s o r t e d <− s o r t ( s c o r e d $ A c t u a l )
p r i n t ( s c o r e s . s o r t e d [ q u a n t ] )
# o u t p u t 0 .8503561

C. Network Architectures and Hyperparameters: WGAN

The following explains the network architectures of
the generator and the critic of the Wasserstein GAN and
provides a deeper insight into the hyperparameters and other

implementation details.

Generator: Appendix 2 illustrates the network architecture
of the generator network used in the WGAN.

Layer Type Output Shape Param #
InputLayer [(None, 200)] 0
Dense (None, 8192) 1638400
Reshape (None, 8, 8, 128) 0
Conv2DTranspose (None, 16, 16, 128) 409728
Conv2DTranspose (None, 32, 32, 64) 204864
Conv2DTranspose (None, 64, 64, 64) 102464
Conv2DTranspose (None, 128, 128, 32) 100384
Cropping2D (None, 125, 125, 32) 0
Conv2DTranspose (None, 250, 250, 16) 25104
Conv2DTranspose (None, 500, 500, 8) 6280
Conv2DTranspose (None, 1000, 1000, 1) 393
Total params: 2,487,617

Appendix 2: Network architecture of the generator network
with a total of 2,487,617 parameters.

Critic: Appendix 4 illustrates the network architecture of
the critic network used in the WGAN. To simplify the expla-
nation, we first define a building block of the discriminator
(see appendix 3).

MixedBlock(A, B):    Input(None,  4 * r,  4 * r,   #filter
prev

)

MixedBlock(A, B):    Output(None,  r,   r,  2 * #filter
B
)

Conv (3x3), stride 1, #filters = A

Conv (3x3), stride 1, #filters = A

MaxPool (2x2), stride 2

Conv (3x3), stride 1, #filters = B

Conv (3x3), stride 1, #filters = B

MaxPool (2x2), stride 2

Conv (7x7), stride 2, #filters = A

Conv (7x7), stride 2, #filters = B

Concatenation on Channel-axis

Appendix 3: Building block of the discriminator: A “MixedBlock”
combines small, pooled convolutions with large, strided convolutions.

Layer Type Output Shape Param #
InputLayer (None, 1000, 1000, 1) 0
Conv2D (None, 1000, 1000, 8) 80
Conv2D (None, 1000, 1000, 8) 584
MaxPooling2D (None, 500, 500, 8) 0
MixedBlock(A=16, B=32) (None, 125, 125, 64) 48784
MixedBlock(A=32, B=64) (None, 31, 31, 128) 283936
MixedBlock(A=64, B=128) (None, 7, 7, 256) 1938048
Flatten (None, 12544) 0
Dense (None, 1) 12545
Total params: 2,283,977

Appendix 4: Network architecture of the critic network with
a total of 2,283,977 parameters.

We use Adam as an optimizer with a learning rate of
1e − 4. We set beta1 to 0.5 and beta2 to 0.9, in order to
mitigate the momentum-effect, as suggested in [10]



Layer Type Output Shape Param #
InputLayer (None, 1000, 1000, 1) 0
Conv2D (None, 1000, 1000, 8) 80
Conv2D (None, 1000, 1000, 8) 584
MaxPooling2D (None, 500, 500, 8) 0
MixedBlock(A=16, B=32) (None, 125, 125, 64) 48784
MixedBlock(A=32, B=64) (None, 31, 31, 128) 283936
MixedBlock(A=64, B=128) (None, 7, 7, 256) 1938048
Conv2D (None, 5, 5, 256) 590080
Conv2D (None, 3, 3, 512) 1180160
Flatten (None, 4608) 0
Dense (None, 512) 2359808
Dense (None, 1024) 525312
Dense (None, 1) 1025
Total params: 6,937,033

Appendix 5: Network architecture of the score prediction
model with a total of 6,937,033 parameters, of which
4,660,993 were newly added to the pretrained WGAN critic.

We use Adam as an optimizer with a learning rate of
2e− 3 when training with frozen baselayers and 3e− 4 when
training all layers jointly. We reduce the learning rate when
the validation error stagnates.

D. Network Architecture and Hyperparameters: CNN baseline

Appendix 6 explains the network architecture of the baseline
CNN.

Layer Type Output Shape Param #
InputLayer (None, 1000, 1000, 1) 0
Conv2D (None, 498, 498, 4) 104
Conv2D (None, 247, 247, 8) 808
Conv2D (None, 122, 122, 16) 3216
Conv2D (None, 59, 59, 32) 12832
Conv2D (None, 28, 28, 64) 51264
Conv2D (None, 12, 12, 128) 204928
Conv2D (None, 4, 4, 256) 819456
Flatten (None, 4096) 0
Dense (None, 1) 4097
Total params: 1,098,737

Appendix 6: Network architecture of the basic CNN baseline
network with a total of 1,098,737 parameters. BatchNorm and
LeakyReLU were applied after every Conv-layer.

We use Adam as an optimizer with a learning rate of
1e− 3. We reduce the learning rate when the validation error
stagnates.

E. Model Details: Feature based baseline

Since we observed a correlation between some basic fea-
tures and the similarity scores (see appendix 7), we consider
as an additional baseline a model based on extracted features.
Since signal is very localised in the galaxy images, we
choose as our baseline a model based on the Discrete Wavelet
Transform (DWT). Specifically, we train a histogram-based
gradient boosting regression tree on features of proportions
of energy in coefficients of Coiflet DWT with a maximal
refinement level of 10. The histogram-based gradient boosting
regression was trained with the least absolute deviation loss,
maximal number of iterations 500 and maximal number of
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Appendix 7: Observed relation between image scores and the per-
centage of pixels with intensities above average. For all images with
high scores (i.e. above 2.0), there are very few (i.e. less than 20
percent) pixels with above average intensity. The opposite is true for
low-score images. For majority of scores around 0.0, there are over
60 percent of pixels with above average intensity.

leaf nodes of 100 (other parameters were left as default in the
scikit-learn implementation).

F. Error Analysis: Score Prediction

Appendix 8 illustrates the performance of our approach for
the task of assigning similarity scores on the training dataset.
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Appendix 8: Score predictions of the finetuned discriminator for the
train set (i.e. the scored subset).



G. Galaxy Image Generation Results

The following two figures show some generated images. The
cosmology image in figure appendix 9 has been generated with
the WGAN, whereas the cosmology image in figure appendix
10 has been generated with the StyleGAN2.

Appendix 9: Full-size image, generated by the trained WGAN.

Appendix 10: Full-size image, generated by the StyleGAN2 after
finetuning on the given cosmology dataset.

H. Google Sky and StyleGAN2

Pretraining process of the StyleGAN2 with Google Sky
dataset: https://youtu.be/ojSu4vEa7tA

Finetuning process of the StyleGAN2 with the original
galaxy dataset: https://youtu.be/eAKhglFyjpo

Appendix 11: Example Image from Google Sky.

Appendix 12: Full-size image, generated by our StyleGAN2 after
pretraining on Google Sky.

https://youtu.be/ojSu4vEa7tA
https://youtu.be/eAKhglFyjpo

